Friday, April 24, 2009
Saturday, April 18, 2009
oracle portal
导读-- 本文首先介绍了Oracle Portal的定义、特点,接着阐述了portal的体系结构
摘要: Portal是IT领域的新技术,是企业信息化工作的发展方向之一。本文首先介绍了Oracle Portal的定义、特点,接着阐述了portal的体系结构。随后本文介绍了Oracle9iAS Portal的功能特点及基于它的企业门户网站的开发。最后本文简要探讨了基于portal的门户网站开发的问题。
关键词: oracle portal,门户,网站,信息入口,企业入口
引言
Oracle Portal为企业提供了一个单一的访问企业各种信息资源的入口,利用它,企业可以为员工、供应商、零售商、合作伙伴等提供个性化的信息服务,使他们能通过单一的入口,迅速找到所需的信息。Portal具有众多的核心功能特性,将企业的应用、人员、信息与流程有机地结合起来,为信息化工作的开展提供了可行的思路和解决方案。
Oracle Portal概述
1、Oracle Portal是什么
Portal一词是从Internet所衍生出来的,最初的“门户”一词主要是指信息门户,诸如雅虎、新浪等网站都是一种信息门户。随后,门户的应用领域又得到扩展,出现了企业信息门户(Enterprise Information Portal,EIP)。Oracle Portal是一个建立企业信息门户的集成环境。通过Oracle Portal,企业员工可以很方便地将自己所需要的,来源于各种渠道的信息集成在一个统一的视图之内。例如,在传统企业信息系统环境下,一个财务部门可能要接触这样一些信息源:企业财务软件,企业内部网站的政策、新闻、公告,各种图表、报表,互联网上的财经新闻,股票行情等等;通过Oracle Portal提供的“自助式”的服务,财务部门可以为自己部门量身定制一套财务人员的信息门户,将上述信息有效地组织在Web应用程序之中,并根据不同级别人员的职能设定相应的访问权限。在以前,这可能需要向IT部门提交详细的需求分析,并等待好几个月才能投入使用;通过Oracle Portal提供的快速、易用的开发工具和内建功能模块,非IT人员也可以根据自己的实际业务需求,创建这样的集成化Web应用了。
2、Oracle Portal的体系结构
1) Oracle Portal节点
每台安装Oracle Portal示例的服务器称为一个Oracle Portal节点。每个OraclePortal节点包含有超过200个表及视图,以及超过1000个PL/SQL包。Oracle Portal节点之间可以相互注册,形成一个联合Portal结构。节点的注册和管理可以很容易地由企业的中心Portal管理。Portal容器是存储Oracle Portal对象的地方。它保存着Provider注册表,页面的样式定义,用户对Portlet的定制,访问权限,内容区域及页面的定义,数据驱动的组件等等。数据库Provider管理基于数据库的PL/SQL或Java存储过程形式的Portlet,它存储在Portal节点之外。Portal框架通过数据库Provider调用这些Portlet,并将返回的HTML/XML形式的结果显示在页面的某个区域中。与数据库Provider不同的是,Web Provider面向的是来自Web的数据,它们通常是通过HTTP协议而不是数据库存储过程来调用的,并且返回的结果已经是格式化的HTML/XML内容。
2) Oracle Logon/SSO Server
SSO是Single Sign-On的缩写,即单一登录模式。SSO服务器集中管理用户的身份验证和权限管理,这使得其它应用程序可以将这些任务交给SSO服务器统一完成,也使得用户只需要在SSO服务器上登陆一次就可以使用所有相关联的应用程序,而无需记忆多个帐户密码。
3)Oralcle 9i Application Server
Oracle 9iAS是Oracle Portal的中间层应用程序服务器。在Oracle9iAS中,Oracle HTTP Server提供主要的HTTP服务,Oracle Jserv提供JSP和servlet服务,modPL/SQL以Apache模块的模式提供从Web访问Oracle数据库的服务。
4)Oracle Portal Cache
Oracle Portal Cache使用基于文件系统的存储系统,为页面定义和portlet生成的内容提供缓存,使用缓存系统,Oracle Portal无需每次生成页面的时候都访问对象存储系统或调用所有portlet,这样大大提高了页面的响应时间。
Oracle9iAS Portal概述
1、Oracle9ias Portal的功能
Oracle9iAS Portal是1999年初作为Oracle WebDB一部分引入的技术的下一代。Oracle9iAS Portal是Oracle9i的关键组件,作为一项服务集成到Oracle9i应用服务器中。有了Oracle9iAS Portal,企业就拥有了一种强有力的手段,可以向员工、合作伙伴和供应商提供一致、高效的访问途径,使他们能够访问更有效地完成日常业务任务所需的企业信息和工具。Oracle9iAS Portal通过提供如下功能实现了上述目标。
1) 单点交互功能
Oracle9iAS Portal的可扩展的门户框架提供了集成能力和对企业信息的标准访问途径,同时,灵活的工作环境使各机构、部门和个人用户能够对他们的门户风格进行个性化定制。Oracle9iAS Portal作为单一交互点,通过把信息集中在一起来解决这些问题:把用户与他们的信息源更好地连接在一起,同时提供了适应不同个人开展工作与处理信息的方式所需的灵活性。Oracle9iAS Portal作为真正企业级的电子商务门户,用称为portlet的可重复使用的信息组件,在彼此互不相连的动态数据、文档和Web站点的世界中架起了沟通的桥梁。
2) 集成的成套门户服务
Oracle9iAS Portal的自助式门户服务使用户和开发人员能够组织与发布信息并创建应用。除了能访问企业数据并对其进行个性化处理外,Oracle9iAS Portal还并入了若干自助式功能,允许门户用户和管理员直接地管理他们的信息。这些服务能够让最终用户控制并负责他们的信息,也向IT专业人员提供了更好地满足最终用户的需求工具。Oracle9iAS Portal还为文档发布、文件上传、页面格式化以及访问控制提供了一套集成功能,可以让用户共享和管理信息。除了文件类型内容外,来自Oracle数据库的信息也能够很容易地集成到Oracle9iAS Portal之中。Oracle9iAS Portal包含有一个数据驱动的组件库,可以用于与Oracle数据库地交互,并把信息无缝地嵌入门户页面内的portlet之中。这些组件包括Javascript增强型地数据输入表单、以HTML、纯文本或MS Excel格式输出的分栏报告、可定制HTML条形图以及其他几个用于发布Oracle数据库中数据的组件。
3)完整的部署和管理环境
Oracle9iAS Portal借助简单性而赋予用户力量,因为它基于互联网的开放标准。它不要求用户安装和学习大型复杂的程序,不让用户接触这些不必要的复杂性,而是通过管理基础性的Oracle8i数据库中的内容,而对Oracle9iAS Portal进行集中维护。Oracle9iAS Portal的成熟的三层体系结构支持多种多样的配置,并可扩展以满足复杂的要求。Oracle9iAS具备灵活的部署模式,支持在类型广泛的硬件和操作系统上的多种配置形式,从而产生了高度可伸缩的性能。Oracle9iAS Portal支持向全球社会部署。包含在Oracle9iAS Portal的向导、对话框、消息和帮助内容中的文本已经翻译成20多种语言,以满足不同用户的需求。
2、基于Oracle9iAS的门户网站的开发
为满足一般企业的业务需求和技术需求,可以构建它的集成信息咨询门户。该解决方案分为4层结构:客户层、中间层、基础架构层,数据层。
1)客户层:我们采用浏览器作为客户端的显示工具,使最终用户无需安装任何客户端工具,即可在任何时间任何地点在任何系统平台上访企业的门户平台。
2)中间层:中间层是标准的基于Apache的Oracle9iAS安装;Oracle Portal直接操纵mod_PL/SQL和mod_OC4J,中间层包括三个部分,Oracle门户,网络提供者(Web Provider)和商务智能。Oracle门户包括HTTP服务器,用以处理Oracle前端的页面请求并负责应答;并行页面引擎,是一个servlet引擎,与Web和数据库提供者通讯生成相应的portlet内容并负责页面装配,也与缓存页面定义和portlet内容的“本地”文件系统交互;可配置多个线程来实现与提供者之间的并行通讯;mod_PL/SQL用于处理PL/SQL的应用模块。 Web-Cache在HTTP服务器上的应用能提高整个Oracle Portal的效率。运用9iAS强大的商务智能分析数据,可提供根据客户需求所定制的报表。Web内容提供者可工作在各种Web环境,通过HTTP通讯并返回HTML/XML格式的结果;通过SOAP XML进行数据交换;适用于现有的和远程的Web服务,并支持订阅模式。
3)基础构架层:提供单一登陆服务,对整个系统进行单一的安全管理;提供访问后台数据库的统一连接;还包括Oracle的集成和工作流服务,用以连接各种异构平台和系统。
4)数据层:包括所有为Portal提供数据的客户服务器,内部网站系统和外部网站。
4、门户网站开发存在的问题
以Oracle9iAS 为基础,为企业提供快速建立企业入口网站的方案,让企业无需购买、安装软件,无需担心额外增加MIS人员等负担,只要嵌入Oracle网站,即可享受Oracle提供的基础构架,并在网站上勾选所需的功能以组建自己的网站。Web界面容易上手的特性,使得Intranet成为企业沟通、管理的重要工具。这也使得企业门户网站的建设逐渐变成一种必然。然而纵观国内多数企业开设的入口网站,目前仍处于低级阶段,尚未发挥应有的功效,而软件商提出的各种解决方案又令人目不暇接,难以抉择。总的来说,企业门户网站建设存在以下几个问题:1)企业的门户网站有建成大杂烩的趋势;2)企业的文化障碍凌驾于技术之上,阻止了企业门户网站的继续开发和投入使用;3)门户网站内容的完成仅仅是个开始,还有很多其它技术任务有待完成。如何解决上述三个问题无疑是当今企业门户网站建设成功与否的关键。
结束语
Oracle9iAS可以用来快速部署和开发个性化门户网站,而它包括的Oracle9iAS Portal具有易用的Web界面,使用户能够有条理的对商业信息、网页内容和应用进行个性化的浏览。使用Oracle的门户解决方案,简单实现门户单点信息访问,将使您的企业门户网站成为一种全新的电子商务桌面,去迎接更为激烈的挑战!
Tuesday, April 14, 2009
Wednesday, April 8, 2009
Monday, April 6, 2009
Sunday, March 29, 2009
Saturday, March 28, 2009
介绍Linux内核是如何工作的
http://news.csdn.net/n/20090327/124513.html
Friday, March 27, 2009
TIOBE Programming Community Index for March 2009
March Headline: All time high for JavaScript, all time low for Perl
The TIOBE Programming Community index gives an indication of the popularity of programming languages. The index is updated once a month. The ratings are based on the number of skilled engineers world-wide, courses and third party vendors. The popular search engines Google, MSN, Yahoo!, and YouTube are used to calculate the ratings. Observe that the TIOBE index is not about the best programming language or the language in which most lines of code have been written.
The index can be used to check whether your programming skills are still up to date or to make a strategic decision about what programming language should be adopted when starting to build a new software system. The definition of the TIOBE index can be found here.
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
GT problems
1.find shortest distance between two nodes in non-negatively weighted directed graph
2.find topological ordering of the nodes
3.find max flow in flow network
4.maximum matching in unweighted graph
5.matching in weighted bipartite graphs (an assignment problem )
6.find distances between all pairs of nodes in non-weighted directed graph
7.find minimum spanning tree for a connected weighted graph
8.test graph for bipartiteness
9.vertex cover problem
如何投资股票之三大建议
广大股民期待已久的“杨百万炒股秘笈报告会”昨天下午在煤海大剧院成功举行。为时两个多小时的报告会中,被誉为“中国第一股民”的杨百万热情洋溢,妙语连珠,与1500余名热情股民分享了他投身股市20年的独特理念和成功经验。报告会受到了广大股民的热烈追捧,取得了圆满成功。
■经典语录
1、股市政府主导,不可逆市而为。
2、股市是放大人性弱点的放大镜。
3、抄底逃顶,落袋为安。
4、指数在高位时,把套牢卖给别人,指数在低位时,把盈利留给自己。
5、低位投资,高位投机。
6、炒股要克服人性的两大弱点:贪婪与恐惧。
7、花不完的钱,再多也不要挣。
8、能使新股民相信的谎言就是概念。
■“谈股论金”之精彩报告
“炒股要克服人性的两大弱点:贪婪与恐惧,要坚持落袋为安”
报告会上,杨百万感慨道:“人民币很有力量,可是有多少人把握得住?”从5·30的股市大跌到现在,大盘虽然已经冲上了5000点,可还有很多人的损失在30%左右,究其原因是广大股民的贪婪和畏惧,不能够做到顺势而为。
结合自己多年来亲历股票市场的风云变幻,杨百万感叹:“在股票市场上,人性的弱点被最大限度地放大,在追逐财富的过程中,贪婪和恐惧让很多散户最终败走股市。很多股民看到股票涨了,就盲目进场,获利了也没有及时将资金落袋为安,最终被套在了高位。而当股票跌到了低位时,很多人又不敢买进,有些人甚至因为耐不住套牢多日,而选择割肉,结果错过了股票的高位。”
杨百万预言:股市行情将在一个半月内出现震荡
“5·30”之前,杨百万综合分析各方面的信息,结合自己的经验,判断出股市将要出现大幅调整,并早早清仓。他的判断曾经被发表在媒体上,但并没有得到热烈回应。最后,事实证明了他当初判断的正确性。
在昨天的报告会上,杨百万再次大胆预言,在未来一个半月左右的时间里,中国的股市还将经历一场大的调整,因为股市已经进入了一个高风险的领域,国家也已经采取一些措施抑制股市的过快增长。为此,他建议广大投资者尽量回避高位风险,短线投资或波段交易才是理智的。
如何投资股票,杨百万给出三点建议:
一是选对时机:
职业投资者区别于普通投资者的最大之处在于,他们往往能从变化莫测的股市交易细微处,洞察先机。而他们之所以能看出盘中数字变化传递的信息,是一种经验的积累,亦即股市经历。
杨百万提出,看盘主要应着眼于股指及个股未来趋向的判断,大盘的研判一般从以下3方面来考虑:股指与个股方面选择的研判;盘面股指(走弱或走强)的背后隐性信息;掌握市场节奏,高抛低吸,降低持仓成本。尤其要对个股研判认真落实。
二是选对股票:
好股票如何识别?杨百万建议股民可以从以下几个方面进行:
(1)买入量较小,卖出量特大,股价不下跌的股票。
(2)买入量、卖出量均小,股价轻微上涨的股票。
(3)放量突破趋势线(均线)的股票。
(4)头天放巨量上涨,次日仍然放量强势上涨的股票。
(5)大盘横盘时微涨,以及大盘下跌或回调时加强涨势的股票。
(6)遇个股利空,放量不下跌的股票。
(7)有规律且长时间小幅上涨的股票。
(8)无量大幅急跌的股票(指在技术调整范围内)。
(9)送红股除权后又涨的股票。
三是选对周期:
股民可根据自己的资金规模、投资喜好,选择股票的投资周期。
在报告会上,杨百万还结合个人的投资理念和经验,就某些具体股票的表现和大盘走势进行了阐释。
■“谈股论金”之会场之外
杨百万受聘,任晚报“财富管家”顾问
此次应晚报邀请,来徐州举行“炒股秘笈报告会”,杨百万自言说是“故地重游”,原来早在20多年前,杨百万经常往来徐州和上海之间,在徐州的老天桥进行国库券的交易。杨百万说,正是这样的交易,让当年他有了进入股市成为“杨百万”的资本。
在报告会举行之前,杨百万还应邀被本报聘为“财富管家” 顾问,杨百万愉快地接受了这一聘任,并感谢晚报为他提供了这样一次与徐州广大股民分享的机会。他热情地表示:“作为一名炒股20余年的老股民,我非常乐意把我的操作理念和经验与广大股民分享。”
■“谈股论金”之热情股民
昔日学生现场送锦旗
报告会现场,市民苗先生和宋女士带着一幅写着“股海迷津指点、市值连年翻番”的锦旗,准备送给杨百万,这一场景受到了广大股民的关注。
记者了解到,原来苗先生和宋女士曾经是杨百万的“学生”,到上海跟着杨百万学过炒股票,而且收益不错。“我曾数次到杨老师家里听他的课,第一次是2000年3月28日,听了一天,第二次听了两天,主要是专门学习抄底、逃顶、如何盯庄等。”
苗先生讲起来一脸的兴奋,“现在杨老师闭着眼睛,就能说出股市的涨停线,他自己做了一套软件,我跟他学了7年,炒股炒了10年,现在已经翻了两三番了。”
股民排队热抢杨百万新书
此次来徐,杨百万还携带自己的新书《要做股市赢家——杨百万股经奉献》,来回馈徐州的广大股票爱好者。看到杨百万带来的新书,股民们立即蜂拥而上,不到十分钟,先行运到的上百本书抢购一空,有的股民甚至一口气买了好几本,准备回去赠送给股友。而买到书的读者纷纷追出会场近百米找杨百万签字。
■“谈股论金”之股民心得
纵先生(园林局退休人员):“选准时机非常重要,另外呢,我也用过杨老师的软件,软件挺好的,但也不是全部跟着软件走,杨老师也说了,没有人能清楚知道未来股市能长到几点,要综合考虑各种因素。”
张女士(投资股票16年):“我觉得,现在理财已经深入人心。这种报告会使理财理念扩大化,不只是炒股这一个方面。我身边的朋友投资证券的特别多,他们都非常依赖杨百万。”
王先生(家住祥和小区):“炒股看大势,‘跟着政策走’,人民币增值的大势在,我们就敢炒。杨老师讲的是他的实战经验,挺好,所以我准备买他的书回去研究一下。另处,我个人观点,中国最大的股市市场在年轻人,年轻人呢,现在种下一颗苗,将来的大树自己乘凉。”
Wednesday, March 25, 2009
拓扑排序
本节说明了如何用深度优先搜索,对一个有向无回路图进行拓扑排序。有向无回路图又称为dag。对这种有向无回路图的拓扑排序的结果为该图所有顶点的一个线性序列,满足如果G包含(u,v),则在序列中u出现在v之前(如果图是有回路的就不可能存在这样的线性序列)。一个图的拓扑排序可以看成是图的所有顶点沿水平线排成的一个序列,使得所有的有向边均从左指向右。因此,拓扑排序不同于通常意义上对于线性表的排序。
有向无回路图经常用于说明事件发生的先后次序,图1给出一个实例说明早晨穿衣的过程。必须先穿某一衣物才能再穿其他衣物(如先穿袜子后穿鞋),也有一些衣物可以按任意次序穿戴(如袜子和短裤)。图1(a)所示的图中的有向边(u,v)表明衣服u必须先于衣服v穿戴。因此该图的拓扑排序给出了一个穿衣的顺序。每个顶点旁标的是发现时刻与完成时刻。图1(b)说明对该图进行拓扑排序后将沿水平线方向形成一个顶点序列,使得图中所有有向边均从左指向右。
下列简单算法可以对一个有向无回路图进行拓扑排序。procedure Topological_Sort(G);
begin
1.调用DFS(G)计算每个顶点的完成时间f[v];
2.当每个顶点完成后,把它插入链表前端;
3.返回由顶点组成的链表;
end;
图1(b)说明经拓扑排序的结点以与其完成时刻相反的顺序出现。因为深度优先搜索的运行时间为θ(V+E),每一个v中结点插入链表需占用的时间为θ(1),因此进行拓扑排序的运行时间θ(V+E)。
图1 早晨穿衣的过程
为了证明算法的正确性,我们运用了下面有关有向无回路图的重要引理。
引理1
有向图G无回路当且仅当对G进行深度优先搜索没有得到反向边。
证明:
→:假设有一条反向边(u,v),那么在深度优先森林中结点v必为结点u的祖先,因此G中从v到u必存在一通路,这一通路和边(u,v)构成一个回路。
←:假设G中包含一回路C,我们证明对G的深度优先搜索将产生一条反向边。设v是回路C中第一个被发现的结点且边(u,v)是C中的优先边,在时刻d[v]从v到u存在一条由白色结点组成的通路,根据白色路径定理可知在深度优先森林中结点u必是结点v的后裔,因而(u,v)是一条反向边。(证毕)
定理1
Topological_Sort(G)算法可产生有向无回路图G的拓扑排序。
证明:
假设对一已知有问无回路图G=(V,E)运行过程DFS以确定其结点的完成时刻。那么只要证明对任一对不同结点u,v∈V,若G中存在一条从u到v的有向边,则f[v]
下面是该算法的具体实现:procedure Topological_Sort_II(G);
begin
1 for 每个顶点u∈V[G] do d[u]←0; //初始化d[u],d[u]用来记录顶点u的入度
2 for 每个顶点u∈V[G] do
3 for 每个顶点v∈Adj[u] do d[v]←d[v]+1; //统计每个顶点的入度
4 CreateStack(s); //建立一个堆栈s
5 for 每个顶点u∈V[G] do
6 if d[u]=0 then push(u,s); //将度为0的顶点压入堆栈
7 count←0;
8 while (not Empty(s)) do
begin
9 u←top(s); //取出栈顶元素
10 pop(s); //弹出一个栈顶元素
11 count←count+1;
12 R[count]←u; //线性表R用来记录拓扑排序的结果
13 for 每个顶点v∈Adj[u] do //对于每个和u相邻的节点v
begin
14 d[v]←d[v]-1;
15 if d[v]=0 then push(v,s); //如果出现入度为0的顶点将其压入栈
end;
end;
16 if count<>G.size then writeln('Error! The graph has cycle.')
17 else 按次序输出R;
end;
上面的算法中利用d[u]来记录顶点u的入度,第2-3行用来统计所有顶点的入度,第5-6行将入度为0的顶点压入堆栈,第8-15行不断地从栈顶取出顶点,将该顶点输出到拓扑序列中,并将所有与该顶点相邻的顶点的入度减1,如果某个顶点的入度减至0,则压入堆栈,重复该过程直到堆栈空了为止。显而易见该算法的复杂度为O(VE),因为第2-3行的复杂性就是O(VE),后面8-15行的复杂性也是O(VE)。这个算法虽然简单,但是没有前面一个算法的效率高。
上一页 返回目录 返回页首 下一页
本页最后一次更新于03/26/2009email: starfish@vip.sina.com©2000 算法与数据结构 http://algorithm.126.com/ 版权所有 转载请保留出处
SQL 大全
Tuesday, March 24, 2009
A Publisher's Introduction to the Semantic Web
White Papers
Newsletters
A Publisher's Introduction to the Semantic Web
by Ed Stevenson
Spamoflage( 'ES', 'Email' );
May 2005
Although the concept of the Semantic Web began to surface in the early part of this century (see this early Scientific American article from Tim Berners-Lee, James Hendler, and Ora Lassila), it is now reaching buzzword status. Some publishers have been using technologies considered to be "semantic" for a few years, but it is a new topic for many others.
What do the concepts behind the Semantic Web mean for publishers? Well, first let's ask—what is the Semantic Web? The point of the Semantic Web is a richer interconnectiveness among all objects (or content), thereby allowing us to pull data from various sources to discover new meaning and present in different formats. A simpler view is that the Semantic Web makes better use of metadata. That is, all objects on the web are assigned rich data to describe themselves (in a universal and standardized format), and tools are better able to make use of that data.
Creating richer metadata
Almost all publishers use metadata in some capacity. Most also use taxonomies (a hierarchy of terms used to categorize content), although they might not call them by that name. The next step beyond that is the use of ontologies. Just as taxonomies make metadata or controlled vocabularies look "flat," ontologies do the same to taxonomies. Ontologies describe more detailed relationships among concepts and provide a higher level of richness in the metadata.
Taxonomies are just like the animal and plant kingdom taxonomies, in which every species lives in a particular branch. However other, more conceptual objects don't always have that clear lineage. If we created a taxonomy based on colors with the three primary colors—red, yellow, and blue—as the top nodes, orange would need to be related to both red and yellow. In a simple taxonomy, we would probably repeat the term "orange" under both, but in a technical sense they would really be two distinct nodes that have the same name.
In an ontology, orange can be represented as the exact same concept appearing in multiple nodes on the tree. In fact, an ontology is not a tree at all. It is a complex mapping of concepts with defined relationships between those concepts (such as "part of" or "subclass of").
In their most expanded use, ontologies can in themselves be valuable collections of information and almost become database-like in nature. Imagine an ontology that captures court "metadata" for a legal publisher. That publisher may currently have a taxonomy with branches for federal courts, district courts, state courts, etc. But in this "flat" taxonomy, there is probably no implicit relationship between the local and district courts or state courts or to geographical boundaries like state or congressional district lines. In an ontology those relationships can be established. Of course, documents are still tagged to nodes in the ontology, but even without the documents, the ontology becomes a very valuable piece of content.
RDF and OWL: expressing richer metadata with W3C standards
The W3C standard framework for expressing metadata (including taxonomies and ontologies) is RDF (Resource Description Framework).
RDF provides a standard framework for expressing information about resources (metadata) that allows for complex definition of relationships, polyheirarchal taxonomies (giving a node multiple parents), and the ability to combine taxonomies (by connecting a detailed taxonomy to a broader taxonomy through a common node). The purpose of RDF is to create a syntax to capture rich metadata and relationships and allow the processing of this data by applications.
The RDF data model expresses relationships among resources in what is called "triples." These triples define two things and the relationship between them. Each triple consists of a subject, a predicate and an object (sometimes called the resource, property, and value). The subject (or resource) is the "thing" the statement is about, the predicate (or property) specifies a characteristic or property of the subject, and the object (or value) is the value of that characteristic or property.
The following illustration is an RDF graph representing a triple that illustrates the simple metadata value of the author of this newsletter article:
Where RDF gets interesting is when you start to combine triples, such as making the author the subject of another triple describing his email address or company affiliation.
The PRISM metadata standard can often be expressed in RDF, many RSS feeds use RDF syntax, and Adobe's XMP (eXtensible Metadata Platform) for embedding metadata within media objects makes use of RDF.
But being a structured framework, RDF is more syntax (structure) than semantics (meaning). OWL (Web Ontology Language) is the W3C effort to provide a standard for the types of relationships that can be expressed in RDF. OWL provides for an XML vocabulary to express hierarchies and relationships. OWL introduces specific property vocabularies, such as "sameAs" and "intertsectionOf." OWL provides a shared meaning in the RDF syntax.
Topic Maps: expressing richer metadata with ISO standards
In semantic circles, there is often discussion about RDF vs. topic maps. In most conceptual ways topic maps are very similar to RDF with some slight and subtle distinctions. Both have different origins. Whereas RDF came through the W3C, topic maps are an ISO standard and arose to address the need to create indexes (like back of the book indexes). Topic maps prime focus is on the topics (or subjects); RDF focuses on the resources. Although both were created for somewhat different purposes, both do very similar things.
Topic maps describe topic structures and associate them with resources. Like RDF, topic maps break from the traditional hierarchal taxonomy and offer much more robust classification, indexing, and relationship descriptions. Topic maps allow for the creation of complex topical descriptions which then point out to resources. There is a separation between the topical information (the index) and the content which is associated to specific topics within it.
The topic maps "language" uses topics, occurrences, and associations in its model where the topic is the resource (the thing or the subject), the occurrence is the resource that has some association with the topic, and the association is a type of relationship. You can see from a very high level the similarities with the RDF model. Note in topic maps the association is two way, that is if my topic is this article, the association is "is authored by" and the occurrence is "Ed Stevenson," the inverse is also true - that is Ed Stevenson (topic) authored (association) this article (occurrence).
It is beyond this introductory article to fully explore the differences between the two and much work has been done in that area. Additionally, the W3C has started a RDF/Topic Maps Interoperability Task Force to look for interoperability between the two. See http://www.w3.org/2001/sw/BestPractices/RDFTM/ for more information.
First steps for publishers
So if you never knew about the Semantic Web but now have the overview, what should you do next? It can be difficult to take the intellectual concepts behind the Semantic Web and apply them to practical day-to-day use in a publishing process. But it is important to be aware of the issues and the potential they have. The following are a few suggestions on preparing your publishing organization for the Semantic Web.
Consider using RDF if you are implementing or re-engineering or enhancing any process capturing metadata. Even if the full power of RDF is not harnessed initially (which it most likely will not be), starting down the path is the first step. There will be more tools and reusable code for translating RDF.
If you are defining or building metadata (or taxonomies or ontologies) look to industry standards first. Consider Dublin Core and PRISM for basic metadata and look to industry specific standards as well (like IEEE and NISO). Borrow where you can.
Value librarians on your staff. They are important now, but are generally undervalued. They will be critical in expanding taxonomies into ontologies and managing the complex relationships.
See the links mentioned in the interview with David Wood in this issue to get some hands-on experience with Semantic Web tools.
Keep an eye on Semantic Web topics through news groups, publications, web sites, etc. Some Semantic Web experts predict the health sciences industry to be some of first adopters of semantic technologies. See the next section for good resources to learn more of the basics as well as stay on top of the latest news and trends.
Monitor the actions of publishers who are using Semantic Web technologies and how they make them worthwhile.
Further reading
In addition to the links found within the document, the following offer good information on the Semantic Web (and were consulted for this article):
W3C RDF Primer
TAO of Topic Maps
O'Reilly's XML.com offers plenty of informative articles all grouped together under a link from the main left navigation: http://www.xml.com/semweb/
Sunday, March 22, 2009
09书单
年又过年,去年在写在译的书又长出了一茬,又是时候订一份今年的读书计划。
架构师类
架构类的书从来都很少,今年又长出两本来。
- 《Beautiful Architecture》 --《Beautiful Code》的姐妹作,里面有三成的架构是自己感兴趣的,已经有国内出版社拿下了,见架构师的唐诗三百首------O'reilly新书Beautiful Architecture(InfoQ中文站) 。
- 《97 Things Every Software Architect Should Know 》 -- 一个开放的wiki ,O'Reilly 将它发布成书,不知道有没人在翻。
- 《Pattern-Oriented Software Architecture, Volume 4 - A Pattern Language forDistributed Computing》 -- 架构模式的集大成者,号称有人在翻但等了一年中文版还是没翻出来啊。
架构技术类
虽然云计算已经开始代替SOA成为新一代大词,但回顾一下整个SOA出版风潮,自己觉得值得一读不忽悠的居然只有一本《SOA in Practic - SOA实践指南-分布式系统设计的艺术》 。
在热潮彻底退却前,SOA书还在继续出着,OSGI与SCA的书开始出现:
- 《SOA Design Patterns》 -- 又是Thomas Erl的书,很奇怪的连电子版都找不到。
- 还 没出版的呀 --《SOA Patterns》、《ESB Architecture for SOA》、《SOA with Java》、《Open Source SOA》、《OSGi in Action》、《SpringSource dm Server in Action》、《Modular Java: Creating Flexible Applications with OSGi and Spring》、《Understanding SCA》、《Apache Tuscany in Action》
编程匠师类
立志做一个匠师的人,今年会比较幸福。
- 《Beautiful Code - 代码之美》 -- 很有经典潜质的一本,去年没有读完今年继续。
- 《Produtive Programmer - 卓有成效的程序员》 -- Thoughtworks中国翻译的,看了下样章,熊节(透明)的翻译依然是这么好,见《卓有成效的程序员》推荐序:做一个懒人(InfoQ中文站) 。
- 《Clean Code: A Handbook of Agile Software Craftsmanship》 -- Rober。C大叔的书,不知道谁在翻,应该很容易翻啊,到后面大段大段都是代码。
- 《Effective Java中文版(第2版)》 -- 特别感谢俞黎敏同学送的书,这里推荐一把了。
bash编程
bash编程
bash脚本编写教程 说明,这部教程是我在网上找到比较经典的BASH中文教程,对新手学习bash脚本,bash编程的好文章。 建立一个脚本 |
The Stony Brook Algorithm Repository
Algorithm Implementations in Java
- JGraphT: Java graph library (Library) NEW
- Connected Components
(9) , Drawing Graphs Nicely(9) , Graph Data Structures(7) , Shortest Path(9) , Topological Sorting(8) , Traveling Salesman Problem(5) , Vertex Cover(9) - Java Collections (Library) NEW
- Calendrical Calculations
(9) , Dictionaries(8) , Median and Selection(9) , Priority Queues(8) , Searching(9) , Set Data Structures(9) , Sorting(9) - Weisses Data Structure (Application)
- Dictionaries
(9) , Kd-Trees(5) , Priority Queues(9) , Searching(8) , Set Data Structures(5) - JDSL: Java Data Structures Libary (Library) NEW
- Connected Components
(8) , Dictionaries(9) , Graph Data Structures(8) , Minimum Spanning Tree(8) , Priority Queues(9) , Topological Sorting(8) - GNU Classpath: an GNU Java API Library (Library) NEW
- Dictionaries
(7) , Priority Queues(8) , Set Data Structures(8) - JUNG: Java graph data structure (Library) NEW
- Connected Components
(9) , Graph Data Structures(9) - JScience: comprehensive Java library for the scientific community. (Library) NEW
- Determinants and Permanents
(9) , Solving Linear Equations(9) - JAMA : A Java Matrix Package (Library) NEW
- Determinants and Permanents
(9) , Solving Linear Equations(8) , Matrix Multiplication(5) - Samest Spatial Index Demos (Animation) NEW
- Kd-Trees
(9) , Nearest Neighbor Search(7) - JGraphEd: Java Graph Editing application (Application) NEW
- Planarity Detection and Embedding
(9) - Prof Harold Thimbleby's The Chinese Postman Problem (Application) NEW
- Eulerian Cycle / Chinese Postman
(9) - Biojava: A Java framework for processing biological data. (Embedded) NEW
- Suffix Trees and Arrays
(9) - Parallel Random Number Generation (Application) NEW
- Random Number Generation
(8) - JGraph: Java Graph Visualization and Layout (Library) NEW
- Graph Data Structures
(8) - JGAP: Java Genetic Algorithms Package (Library) NEW
- Constrained and Unconstrained Optimization
(8) - Scott Cotton's graphlib (Library) NEW
- Transitive Closure and Reduction
(8) - Colt Project (Library) NEW
- Determinants and Permanents
(5) , Solving Linear Equations(7) , Matrix Multiplication(5) - Bruno R. Preiss's books with source (Application) NEW
- Graph Data Structures
(5) , Priority Queues(5) , Set Data Structures(6) - JFLAP: Formal Languages and Automata Theory (Application) NEW
- Finite State Machine Minimization
(7) - Bioalgorithms' Longest Common Subsequence (Application) NEW
- Longest Common Substring
(7) - QOCA Project (Library) no updates since 2001 NEW
- Linear Programming
(7) - 3D Convex Hull algorithm in Java (Application) no updates since 1999
- Convex Hull
(4) , Voronoi Diagrams(5) - GA Playground (Library)
- Traveling Salesman Problem
(3) , Constrained and Unconstrained Optimization(4) - Java Compatible Toolkit (Application) no updates since 1998
- Finite State Machine Minimization
(3)
Go to Main Page This page last modified on 2008-07-10 . www.algorist.com